ВІСНИК ЖДТУ № 4 (47) Технічні науки

В.В. Карачун, д.т.н., проф.
В.М. Мельник, к.т.н., доц.
Національний технічний університет України «КПІ»

ОБЧИСЛЕННЯ КООРДИНАТНИХ ФУНКЦІЙ ОБОЛОНКОВИХ ФРАГМЕНТІВ ПІДВІСУ ГІРОСКОПА

Проходиться аналіз пружно-деформованого стану підвісу гіроскопа, поліагрегатного за складом. Обчислюються координаційні функції оболонкової частини, наводяться відомі рівняння та визначається ступінь взаємного впливу координацій тривимірної задачі. Окреслюються межі застосування аналітичного апарату для збурюючих чинників довільної структури.

Постановка проблеми. Побудова опорної системи координат під час старту ракет-носіїв, а також визначення орієнтарних напрямків, передбачених технічним завданням, постають однією з найважливіших завдань навігації. Тому аналіз природи виникнення при старті РН похибок, постає напручену важливою складовою безпечення виконання полігового завдання.

Збурюючі чинники, які мають місце на стартовій площадці, певним чином діють на механічні системи приладів і систем інерціальної навігації. Це – кінематичне збурення, силове, тепловий факел, проникне акустичне випромінювання тощо. Пружні нелінійні коливання підвісу носіїв кінетичної системи – гіроскопів – у своїй сукупності можуть сприйматися приладом як вхідний сигнал, будучи насправді«хибним» сигналом. Звідси – похибки інерціальної апаратури.

Аналіз останніх досліджень і публікацій. Збурений стан плоских та оболонкових фрагментів як правило здійснюється без врахування особливостей динаміки поверхні за наявності носіїв кінетичного моменту і породженням цієї особливості – просторовою стабілізацією [1, 2]. Перші дослідження в цьому напрямку висвітлені, наприклад у монографії [3] з’ясована природа гіроскопічних явищ за наявної хитання РН та нерівність коливань підвісу.

Виділення невірішеного Раніше частин загальної проблеми. Поплавковий підвіс гіроскопа має вигляд колового циліндра, що занурений у важку органічну рідину. Пружні переміщення його поверхні під дією проникного збurenня довільної природи і просторової структури являють не тільки теоретичний інтерес, але і стають на нагад у обрані геометрії лінії меридіана при з’ясуванні ступеня впливу координатних функцій підвісу один на одне, тобто вирішувати питання оптимізації підвісу в аспекті мінімуму похибок навігаційного обладнання.

Метою досліджень постає обчислення і оцінка пружно-деформованих властивостей приладів інерціальної навігації з поліагрегатним підвісом.

\[\begin{align*}
A_1(t) + A_2(t) + A_3(t) + A_4(t) &= Q_1(t) ; \\
A_5(t) + A_6(t) + A_7(t) + A_8(t) &= Q_2(t) ; \\
A_9(t) + A_{10}(t) + A_{11}(t) + A_{12}(t) &= Q_3(t) ;
\end{align*} \tag{1} \]

\[\begin{align*}
B_1(t) + B_2(t) + B_3(t) + B_4(t) &= Q_4(t) ; \\
B_5(t) + B_6(t) + B_7(t) + B_8(t) &= Q_5(t) ; \\
B_9(t) + B_{10}(t) + B_{11}(t) + B_{12}(t) &= Q_6(t) ;
\end{align*} \tag{2} \]

\[\begin{align*}
C_1(t) + C_2(t) + C_3(t) + C_4(t) &= Q_7(t) ; \\
C_5(t) + C_6(t) + C_7(t) + C_8(t) &= Q_8(t) ;
\end{align*} \tag{3} \]

Основний матеріал досліджень. Диференціальні рівняння поплавкового підвісу гіроскопа з довільною геометрією ліній меридіана можна записати у вигляді [4]:

Щоб одержати рівняння частот для цих трьох пар диференціальних рівнянь (1), (2) і (3), формально приймемо рівними нулю їхні праві частини:

\[\begin{align*}
Q_1(0) &= 0 ; & Q_2(0) &= 0 ; & Q_3(0) &= 0 ; & Q_4(0) &= 0 ;
\end{align*} \tag{4} \]

Потім використаємо апроексімацію:

\[\begin{align*}
A_1(t) &= a_1(t) e^{i\omega t} ; & B_1(t) &= b_1(t) e^{i\omega t} ; & C_1(t) &= c_1(t) e^{i\omega t} \\
A_2(t) &= a_2(t) e^{i\omega t} ; & B_2(t) &= b_2(t) e^{i\omega t} ; & C_2(t) &= c_2(t) e^{i\omega t} ;
\end{align*} \tag{5} \]

de \(a_1(t) , b_1(t) , c_1(t), a_2(t), b_2(t), c_2(t) \) – довільні стали. Одержуюмо:
\[
\begin{align*}
(a_{12}^{(1)} - \omega \cdot a_{11}^{(1)}) a_{11}^{(1)} + a_{13}^{(1)} b_{13}^{(1)} + a_{14}^{(1)} c_{11}^{(1)} &= 0 \\
(a_{22}^{(1)} - \omega \cdot a_{21}^{(1)}) a_{21}^{(1)} + a_{23}^{(1)} b_{13}^{(1)} + a_{24}^{(1)} c_{21}^{(1)} &= 0 \\
\cdots
\end{align*}
\]
\[(6)\]

Система рівнянь (6) розпадається на дві незалежних:
\[
\begin{align*}
(a_{12}^{(1)} - \omega \cdot a_{11}^{(1)}) a_{11}^{(1)} + a_{13}^{(1)} b_{13}^{(1)} + a_{14}^{(1)} c_{11}^{(1)} &= 0 \\
(a_{22}^{(1)} - \omega \cdot a_{21}^{(1)}) a_{21}^{(1)} + a_{23}^{(1)} b_{13}^{(1)} + a_{24}^{(1)} c_{21}^{(1)} &= 0 \\
\cdots
\end{align*}
\]
\[(7)\]

або в такій формі:
\[
\begin{align*}
\frac{a_{11}^{(1)}}{a_{11}^{(1)}} - \omega^2 &= \frac{a_{14}^{(1)}}{a_{14}^{(1)}} \\
\frac{b_{11}^{(1)}}{b_{11}^{(1)}} - \omega^2 &= \frac{b_{14}^{(1)}}{b_{14}^{(1)}} \\
\frac{c_{11}^{(1)}}{c_{11}^{(1)}} - \omega^2 &= \frac{c_{14}^{(1)}}{c_{14}^{(1)}} \\
\frac{a_{21}^{(1)}}{a_{21}^{(1)}} - \omega^2 &= \frac{a_{24}^{(1)}}{a_{24}^{(1)}} \\
\frac{b_{21}^{(1)}}{b_{21}^{(1)}} - \omega^2 &= \frac{b_{24}^{(1)}}{b_{24}^{(1)}} \\
\frac{c_{21}^{(1)}}{c_{21}^{(1)}} - \omega^2 &= \frac{c_{24}^{(1)}}{c_{24}^{(1)}} \\
\end{align*}
\]
\[(9)\]

Співвідношення (9), (10) дають можливість визначити частоти ω. З виразу (9) знаходимо:
\[
\lambda^3 + F_1^{(1)} \lambda^2 + F_2^{(1)} \lambda + F_3^{(1)} = 0 ,
\]
\[(11)\]

de $\lambda = \omega^2$;

$$E_1^{(1)} = \frac{a_{11}^{(1)}}{a_{11}^{(1)}} + \frac{b_{11}^{(1)}}{b_{11}^{(1)}} + \frac{c_{11}^{(1)}}{c_{11}^{(1)}} ;$$

$$E_2^{(1)} = \frac{b_{11}^{(1)}}{b_{11}^{(1)}} \frac{a_{11}^{(1)}}{a_{11}^{(1)}} + \frac{c_{11}^{(1)}}{c_{11}^{(1)}} - \frac{a_{12}^{(1)}}{a_{12}^{(1)}} \frac{c_{12}^{(1)}}{c_{12}^{(1)}} - \frac{b_{12}^{(1)}}{b_{12}^{(1)}} \frac{c_{12}^{(1)}}{c_{12}^{(1)}} - \frac{a_{13}^{(1)}}{a_{13}^{(1)}} \frac{c_{13}^{(1)}}{c_{13}^{(1)}} - \frac{b_{13}^{(1)}}{b_{13}^{(1)}} \frac{c_{13}^{(1)}}{c_{13}^{(1)}} ;$$

$$E_3^{(1)} = \frac{a_{11}^{(1)}}{a_{11}^{(1)}} \frac{b_{11}^{(1)}}{b_{11}^{(1)}} \frac{c_{11}^{(1)}}{c_{11}^{(1)}} - \frac{a_{12}^{(1)}}{a_{12}^{(1)}} \frac{b_{12}^{(1)}}{b_{12}^{(1)}} \frac{c_{12}^{(1)}}{c_{12}^{(1)}} - \frac{a_{13}^{(1)}}{a_{13}^{(1)}} \frac{b_{13}^{(1)}}{b_{13}^{(1)}} \frac{c_{13}^{(1)}}{c_{13}^{(1)}} - \frac{a_{14}^{(1)}}{a_{14}^{(1)}} \frac{b_{14}^{(1)}}{b_{14}^{(1)}} \frac{c_{14}^{(1)}}{c_{14}^{(1)}} .$$

Аналогічно з (10) складаємо друге рівняння частот:
\[
\lambda^3 + E_1^{(2)} \lambda^2 + E_2^{(2)} \lambda + E_3^{(2)} = 0 ,
\]
\[(12)\]

de $\lambda = \omega^2$;

$$E_1^{(2)} = \frac{a_{21}^{(2)}}{a_{21}^{(2)}} + \frac{b_{21}^{(2)}}{b_{21}^{(2)}} + \frac{c_{21}^{(2)}}{c_{21}^{(2)}} ;$$

$$E_2^{(2)} = \frac{b_{21}^{(2)}}{b_{21}^{(2)}} \frac{a_{21}^{(2)}}{a_{21}^{(2)}} + \frac{c_{21}^{(2)}}{c_{21}^{(2)}} - \frac{a_{22}^{(2)}}{a_{22}^{(2)}} \frac{c_{22}^{(2)}}{c_{22}^{(2)}} - \frac{b_{22}^{(2)}}{b_{22}^{(2)}} \frac{c_{22}^{(2)}}{c_{22}^{(2)}} - \frac{a_{23}^{(2)}}{a_{23}^{(2)}} \frac{c_{23}^{(2)}}{c_{23}^{(2)}} - \frac{b_{23}^{(2)}}{b_{23}^{(2)}} \frac{c_{23}^{(2)}}{c_{23}^{(2)}} ;$$

74
В системе уравнений (18) имеет вид (12):

\[E_2^{(2)} = \left(a_2^{(2)} b_2^{(2)} c_2^{(2)} + a_2^{(2)} b_2^{(2)} c_2^{(3)} + a_2^{(2)} b_3^{(2)} c_2^{(2)} + a_2^{(2)} b_3^{(2)} c_2^{(3)} + a_2^{(2)} b_2^{(3)} c_2^{(2)} + a_2^{(2)} b_2^{(3)} c_2^{(3)} \right) \]

Перейдем к канонической форме записи уравнений (11) и (12) в виде, зурчного при значении корней кубического уравнения. Масло вида, что:

\[y_1^3 + 3p_1y_1 + 2q_1 = 0, \quad (13) \]

где

\[y_1 = \lambda_1 + \frac{1}{3} E_1^{(0)} ; \quad 2q_1 = \frac{2E_1^{(0)}E_3^{(0)}}{27} - \frac{E_1^{(0)}E_3^{(0)}}{3} + E_3^{(0)} \]

\[3p_1 = \frac{3E_1^{(0)}E_3^{(0)}}{27} - \frac{E_1^{(0)}E_3^{(0)}}{3} \]

\[y_2^3 + 3p_2y_2 + 2q_2 = 0, \quad (14) \]

где

\[y_2 = \lambda_2 + \frac{E_2^{(2)}}{3} ; \quad 2q_2 = \frac{2E_2^{(2)}E_3^{(2)}}{27} - \frac{E_2^{(2)}E_3^{(2)}}{3} + E_3^{(2)} \]

\[3p_2 = \frac{3E_2^{(2)}E_3^{(2)}}{27} - \frac{E_2^{(2)}E_3^{(2)}}{3} \]

В обоих уравнениях дискриминант \(D = (q_1^2 + p_1^3) > 0 \), что дозволяет решить висячую вязкость наявность одного додатного корня как в (13), так и в (14). Два иных корені – комплексні.

Тоді, застосовувши формулу Кардана для уравнений (13) и (14), знаходимо роз'язок у вигляді:

\[y_1 = U_1 + V_1 ; \quad y_2 = U_2 + V_2, \quad (15) \]

где

\[U_1 = \left[-q_1 + \sqrt[3]{q_1^3 + p_1^3} - \frac{1}{3} \right] \]

\[V_1 = \left[-q_1 - \left(q_1^3 + p_1^3 \right)^{-\frac{1}{3}} \right] \]

Для з'ясувания координатних функции оболонки можна скористатися формулами Крамера та знайти величини \(a_1^{(1)}, a_2^{(1)}, b_1^{(1)}, b_2^{(1)}, c_1^{(1)}, c_2^{(1)} \). 3 цією метою системи уравнений (7) и (8) запишемо в загальному виде:

\[\begin{cases} (a_1^{(2)} - \omega^2 a_1^{(3)}) a_1^{(1)} + a_3^{(1)} b_1^{(1)} + a_d^{(1)} c_1^{(1)} = Q(v(t)) \\ b_1^{(2)} a_1^{(1)} + (b_1^{(2)} - \omega^2 b_1^{(3)}) b_1^{(1)} + b_1^{(1)} c_1^{(1)} = Q(v(t)) \\ c_1^{(2)} a_1^{(1)} + c_3^{(1)} b_1^{(1)} + \left(c_1^{(2)} - \omega^2 c_1^{(3)} \right) c_1^{(1)} = Q(w(t)) \end{cases} \]

\[\left(a_2^{(2)} - \omega^2 a_2^{(3)} \right) a_2^{(1)} + a_3^{(2)} b_2^{(1)} + a_d^{(2)} c_2^{(1)} = Q(v(t)) \\ b_2^{(2)} a_2^{(1)} + (b_2^{(2)} - \omega^2 b_2^{(3)}) b_2^{(1)} + b_2^{(1)} c_2^{(1)} = Q(v(t)) \\ c_2^{(2)} a_2^{(1)} + c_3^{(2)} b_2^{(1)} + \left(c_2^{(2)} - \omega^2 c_2^{(3)} \right) c_2^{(1)} = Q(w(t)) \]

Характеристический визначник \(D^{(1)} \) системы (17) представлений виразом (11):

\[D^{(1)} = \omega^2 E_1^{(0)} \omega^4 + E_3^{(1)} \omega^2 + E_3^{(0)} \]

а визначник \(D^{(2)} \) системы уравнений (18) имеет вид (12):

\[D^{(2)} = \omega^6 E_1^{(0)} \omega^4 + E_3^{(2)} \omega^2 + E_3^{(0)} \]

Тоді з (17) можна обчислити шукані невідомі:

\[a_1^{(1)} = \frac{D^{(1)}}{D^{(0)}} ; \quad b_1^{(1)} = \frac{D^{(1)}}{D^{(0)}} ; \quad c_1^{(1)} = \frac{D^{(1)}}{D^{(0)}} \]

де

\[D_a^{(1)} = \begin{vmatrix} Q^{(0)} & a_1^{(1)} & a_2^{(1)} \\ -b_2^{(0)} - \omega^2 b_2^{(0)} & b_2^{(1)} & c_2^{(1)} \\ Q^{(0)} & c_2^{(1)} & c_2^{(2)} \end{vmatrix} \]

75
Дано:

\[D_b^{(i)} = \begin{vmatrix} a_{4z}^{(i)} - \omega^2 a_{z4}^{(i)} & Q_{x}^{(i)} & a_{4z}^{(i)} \\ b_{z4}^{(i)} & Q_{x}^{(i)} & b_{z4}^{(i)} \\ c_{w4}^{(i)} & Q_{x}^{(i)} & c_{w4}^{(i)} - \omega^2 c_{w4}^{(i)} \end{vmatrix} ; \]

(22)

\[D_c^{(i)} = \begin{vmatrix} a_{4z}^{(i)} - \omega^2 a_{z4}^{(i)} & a_{z3}^{(i)} & Q_{y}^{(i)} \\ b_{z3}^{(i)} & (b_{z4}^{(i)} - \omega^2 b_{z4}^{(i)}) & Q_{y}^{(i)} \\ c_{w3}^{(i)} & b_{w3}^{(i)} & Q_{y}^{(i)} \end{vmatrix} . \]

(23)

Аналогічно з (18):

\[a_1^{(2)} = \frac{D_a^{(2)}}{D^{(2)}} ; b_1^{(2)} = \frac{D_b^{(2)}}{D^{(2)}} ; c_1^{(2)} = \frac{D_c^{(2)}}{D^{(2)}} , \]

(24)

де

\[D_a^{(2)} = \begin{vmatrix} Q_{x}^{(2)} & a_{4z}^{(2)} & a_{4z}^{(2)} \\ b_{z4}^{(2)} & Q_{x}^{(2)} & b_{z4}^{(2)} \\ c_{w4}^{(2)} & Q_{x}^{(2)} & c_{w4}^{(2)} - \omega^2 c_{w4}^{(2)} \end{vmatrix} ; \]

(25)

\[D_b^{(2)} = \begin{vmatrix} a_{4z}^{(2)} - \omega^2 a_{z4}^{(2)} & Q_{x}^{(2)} & a_{z3}^{(2)} \\ b_{z3}^{(2)} & Q_{x}^{(2)} & b_{z3}^{(2)} \\ c_{w3}^{(2)} & Q_{x}^{(2)} & c_{w3}^{(2)} - \omega^2 c_{w3}^{(2)} \end{vmatrix} ; \]

(26)

\[D_c^{(2)} = \begin{vmatrix} a_{4z}^{(2)} - \omega^2 a_{z4}^{(2)} & a_{z3}^{(2)} & Q_{y}^{(2)} \\ b_{z3}^{(2)} & Q_{y}^{(2)} & b_{z3}^{(2)} \\ c_{w3}^{(2)} & Q_{y}^{(2)} & c_{w3}^{(2)} + \omega^2 c_{w3}^{(2)} \end{vmatrix} . \]

(27)

Обчислимо часткові визначники:

\[D_a^{(i)} = Q_{x}^{(i)}(\omega^2 b_{z4}^{(i)} c_{w4}^{(i)} + \omega \left\{ \begin{array}{c} b_{z4}^{(i)} c_{w4}^{(i)} - c_{w4}^{(i)} b_{z4}^{(i)} \end{array} \right\}) + \]

(28)

\[+ Q_{x}^{(i)}(\omega^2 a_{4z}^{(i)} c_{w4}^{(i)} + \omega \left\{ \begin{array}{c} a_{4z}^{(i)} c_{w4}^{(i)} - c_{w4}^{(i)} a_{4z}^{(i)} \end{array} \right\}) + \]

\[+ \omega^2 a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} + a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} ; \]

(29)

\[D_b^{(i)} = Q_{x}^{(i)}(\omega^2 b_{z4}^{(i)} c_{w4}^{(i)} + \omega \left\{ \begin{array}{c} b_{z4}^{(i)} c_{w4}^{(i)} - c_{w4}^{(i)} b_{z4}^{(i)} \end{array} \right\}) + \]

(30)

\[+ \omega^2 a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} + a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} ; \]

(31)

\[D_c^{(i)} = \frac{Q_{x}^{(i)}(\omega^2 b_{z4}^{(i)} c_{w4}^{(i)} + \omega \left\{ \begin{array}{c} b_{z4}^{(i)} c_{w4}^{(i)} - c_{w4}^{(i)} b_{z4}^{(i)} \end{array} \right\})}{D^{(2)}} + \]

(32)

\[+ \omega^2 a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} + a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} ; \]

(33)

\[+ Q_{x}^{(i)}(\omega^2 a_{4z}^{(i)} c_{w4}^{(i)} + \omega \left\{ \begin{array}{c} a_{4z}^{(i)} c_{w4}^{(i)} - c_{w4}^{(i)} a_{4z}^{(i)} \end{array} \right\}) + \]

(34)

\[+ \omega^2 a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} + a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} - a_{4z}^{(i)} b_{z4}^{(i)} c_{w4}^{(i)} . \]

(35)

Висновки. Таким чином, виконана вся підготовча робота для обчислень вібрації поверхні оболонки під дією зовнішніх збурень. Аналітичний опис здійснено у формі, яка дозволяє вивчати дію чинників будь-якої фізичної природи.

ЛІТЕРАТУРА:

КАРАЧУН Володимир Володимирович – доктор технічних наук, академік аерокосмічної академії України, завідувач кафедри біотехніки та інженерії Національного технічного університету України «КПІ».

Наукові інтереси:
– динаміка приладів і систем інерціальної навігації.

МЕЛЬНИК Вікторія Миколаївна – кандидат технічних наук, Лауреат премії Національної академії наук України для молодих вчених, доцент кафедри біотехніки та інженерії Національного технічного університету України «КПІ».

Наукові інтереси:
– динаміка бортової апаратури рухомих об’єктів.

Подано 03.11.2008
Караучи В.В., Мельник В.М. Обчислення координатних функцій оболонкових фрагментів підвісу гіроскопа