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Boundary element method for fracture mechanics analysis of 3d non-planar cracks 

in anisotropic solids 
 

Among the numerical approaches to fracture mechanics analysis of cracked anisotropic solids, the 

boundary element method is notable for high accuracy and performance due to its semi-analytical 

nature and the use of only boundary mesh. Various boundary element techniques were proposed for 3D 

fracture mechanics analysis. However, the main problem of these approaches is the treatment of 

singular and hypersingular integrals, which can demand analytic evaluation of coefficient at kernel 

singularity at singular point in local curvilinear coordinates, which produce cumbersome equations in 

the case of non-planar geometries. 

Therefore, the paper presents novel formulation of the boundary element method for 3D fracture 

mechanics analysis of anisotropic solids with non-planar cracks. Pan’s single domain boundary element 

formulation is extended with several novelties, which allow accurate analysis of non-planar geometries. 

These are modified Kutt’s numerical quadratures with Chebyshev nodes for accurate evaluation of 

singular and hypersingular integrals; polynomial mappings for smoothing the integrand at the crack 

front line; and special shape functions, which account for a square-root stress singularity at crack front 

and allow accurate determination of stress intensity factors. The kernels of boundary integral equations 

are evaluated using the exponentially convergent quadrature, which allows derivation of fast boundary 

element technique. The procedure for accurate numerical determination of stress intensity factors at 

arbitrary point of the crack front is also developed. Numerical examples are presented, which show high 

accuracy of the proposed boundary element method. It is shown that non-planar cracks exhibit shearing 

mode opening along with normal one due to its geometry and direction of the applied loading. 

Present approach can be combined with Sih’s strain energy density criterion to study 3D cracks 

propagation in anisotropic elastic solids under fatigue loading, which is the direction of future research. 

Keywords: anisotropic; crack; boundary element method; 3D fracture; hypersingular. 

 

1. Introduction 

Composite anisotropic materials are widely used in modern technology. They are lighter and possess high 

strength and durability. Composite materials can be designed to fit the demands on bearing capacity of particular 

structural element, in contrast to traditional ones, which are mainly isotropic, and act in the same way in different 

directions. 

Such broad usage of composite materials raised issues on their fracture. There have been introduced two 

main models of such materials. The first of them considers internal structure of a composite, and studies fracture 

phenomena caused by fiber delamination, fiber rupture etc. The second one assumes that a composite material is 

an anisotropic homogeneous continuum, and models fracture phenomena caused by cracks, notches, wedges etc. 

Sih [1, p. 20] has shown that homogeneous anisotropic model can be successfully applied to fracture analysis of 

composite materials, and stress intensity factors (which are incorporated in Sih’s strain energy density criterion) 

are determinative in estimation of composite fracture. 

Among the numerical approaches for fracture mechanics analysis of cracked anisotropic solids, the 

boundary element method (BEM) is notable for high accuracy and performance due to its semi-analytical nature 

and the use of only boundary mesh. Various boundary element techniques were proposed for 3D fracture 

mechanics analysis. Mi and Aliabadi [2, p. 161] derived a 3D dual BEM for analysis of 3D cracks in isotropic 

linear elastic solids. However, this approach used semi-analytic singularity subtraction technique for integration 

of hypersingular integrals. There are different modifications of this technique however, it has to be seriously 

modified, when applied to analysis of anisotropic solids. 

Saez et al. [5, p. 287] presented a boundary element formulation for crack analysis in transversely isotropic 

solids. Muñoz-Reja et al. [6, p. 15] presented the 3D BEM for fracture mechanics analysis of anisotropic 

magnetoelectroelastic materials. However, these approaches used subregion technique, which introduces 

additional boundaries and thus computational error to stress intensity factors obtained. 

Jaworski et al. [7, p. 295], Nikolskiy et al. [8, p. 44] presented 3D BEM for fracture mechanics analysis of 

non-planar cracks; however, planar triangular elements are used, which introduce error in modeling of crack 

geometry. The same planar elements are used in Galerkin BEM for evaluation of singular terms. 

In contrast to above mentioned papers, Pan and Yuan developed a single-domain BEM for 3D fracture 

mechanics analysis in generally anisotropic solids. Quadratic quadrilateral elements were used, which precisely 
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model smooth non-planar cracks. However, the main problem of this approach is the quadrature used for 

treatment of singular and hypersingular integrals, which demand analytic evaluation of coefficient at kernel 

singularity at singular point in local curvilinear coordinates, which produce cumbersome equations in the case of 

non-planar geometries. Therefore, Pan and Yuan restrict themselves in this paper to the flat crack surfaces only. 

This paper presents a novel single-domain BEM for analysis of 3D non-planar cracks in anisotropic solids, 

which consists of new quadratures for hypersingular integrals, new approaches for accurate evaluation of stress 

intensity factors, and accurate techniques for fast and accurate evaluation of hypersingular kernels. 

 

2. Boundary integral equations for cracked anisotropic solids  

In a fixed Cartesian coordinate system 1 2 3Ox x x  the equilibrium equations of an anisotropic solid can be 

presented in the following compact form 

, 0ij j if   , (1) 

where 
ij  is a stress tensor; if  is a body force vector; and indices vary from 1 to 3 (i.e. 1,2,3i  ). Here and 

further the Einstein summation convention is used. A comma at subscript denotes differentiation with respect to 

a coordinate indexed after the comma, i.e. 
,i j i ju u x   . 

In the assumption of small strains the constitutive equations of linear anisotropic elasticity in the compact 

notations are as follows 

,ij ijkm k mC u  , (2) 

where iu  is a displacement vector; 
ijkmC  are the elastic stiffnesses (elastic moduli). 

The boundary value problem for partial differential equations (1), (2) can be reduced to the solution of the 

following boundary integral equations of the single domain BEM: 

 when the collocation point 0x  is placed on the smooth part of the boundary B  of the solid B : 
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 when the collocation point 0x  is placed on the smooth part of the crack surface C : 
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which kernels are defined as 
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,ijk ijmp mk pD C U  ,  ,ijk ijmp kqrs q mr psS C C n U  , (6) 
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where 
pn  is a unit outwards normal vector to the surface B ; f f f     and f f f     denote the sum 

and the difference of functions on opposite faces C
 and C

 of the crack surface C ; 
i ij jt n  is the traction 

vector; τ  is a unit vector collinear with 0x x ; and λ  is a unit vector normal to 0x x ; 0r  x x ;  1

ij

 ξ  are 
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the components of the matrix, which is inverse of the matrix  ik ijkm j mC   ξ , i.e.    1

ik kj ij
  ξ ξ ; 

    1 1

ij ik klms mj l s s lF C        λ λ ; 
kpq k p q k p q k p q            ; CPV stands for the Cauchy Principal 

Value of the integral ,and HFP stands for the Hadamard Finite Part of the integral. 

In the solution of the boundary integral equations (3), (4) the sought functions are tractions it  or 

displacements iu  on the boundary B  of the solid, and displacement discontinuity iu  on the crack surface C . 

When all of these functions are known, stress at arbitrary internal point y B  can be determined as 
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It should be mentioned that stress field possess square root singularity near crack front. The same as in 2D 

fracture mechanics stress intensity factors are introduced for 3D problems, which describe the strength of this 

square root singularity and serves as main fracture parameters. Thus accurate determination of the stress 

intensity factors is a very important issue. 

3. Boundary element solution of the integral equations 

3.1. Evaluation of anisotropic kernels 

When implemented in BEM analysis for 3D cases, kernels given in the integral form can require tremendous 

computational efforts, which perhaps can involve millions of computations for a simple 3D model. Therefore, it 

is essential to use special techniques for evaluation of kernels. For instance, for the kernel (5) and its derivatives 

(7) (required for obtaining kernels (5), (6)) Xie et al. [14, p. 38] proposed three techniques, one of which is based 

on the direct numerical integration, and two others incorporate the residue theorem and reduce kernel evaluation 

to the Stroh eigenvalue problem. 

The computational complexity of the direct numerical integration is  3m O n , where m  is a number of 

quadrature nodes, and n  is the dimension of the problem (3 for anisotropic materials), since matrix inversion is 

incorporated in kernels evaluation. The computational complexity of the Stroh eigenvalue problem is 

     
3 2 3 22

2 5.3
3

n O n n O n    (if Householder transformations are used) or even higher. Therefore, 

computational costs of direct numerical integration are comparable to those of residue calculus, if the number of 

nodes is approximately about 10. However, special case of repeated eigenvalues should be considered separately 

in the residue calculus approach, which complicates corresponding computational algorithms. Thus, direct 

numerical integration approach is advantageous; however, one has to find the numerical quadrature, which 

provides the best accuracy at small number of nodes. 

Since 

cos sin  λ n m , (9) 

where n  and m  are two arbitrary orthogonal vectors in the oblique plane normal to t , it is easy to show 

that the integrands in (5)–(7) are  -periodic functions in polar angle  . Xie et al. [15, p. 183] used Gaussian 

quadrature for evaluation of these integrals. However, even at 25 Gaussian points the convergence of the results, 

especially for the second derivative, is not satisfactory. 

Therefore, in this study it is proposed to use the trapezoid formula for numerical integration of the integrals 

involved in kernels. At first glance, it seems unreasonable, since it is known that Gaussian quadrature has the 

highest accuracy for polynomials. However, it was recently shown that trapezoid rule is exponentially convergent 

for integrals over a periodic interval. This useful feature is implemented in calculation of kernels (5), (6). 

In the numerical examples section it is shown high convergence of the trapezoid rule applied to calculation 

of the kernels. 

3.2. Boundary element mesh and crack front modeling 

At the first step (preprocessing) of the boundary element solution of derived boundary integral equations for 

a particular problem the surface B  of the solid along with the crack surface C  is meshed with quadrilateral 

quadratic discontinuous boundary elements. The local curvilinear coordinate system O  is associated with 

each boundary element, moreover, 1 1   , 1 1   . The collocation points are placed at nodes 

 2 /3;0;2 / 3   ;  2/3;0;2 /3   . Therefore, there are 9 collocation points associated with each boundary 

element. 

Boundary conditions along with unknown boundary and discontinuity functions are interpolated within the 

collocation points at each boundary element N  as 
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     
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,

1 1

, i j

N N i j

i j
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 

b b , (10) 

where  
T

, , , ,i i i i iu u t t t   b , and the discontinuous shape functions are given as [2]  

 1

9 3

8 4
   

 
  

 
,   2
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. (11) 

If the side of the boundary element models the crack front, special shape functions are used for displacement 

and temperature discontinuity to capture the square root singularity arising at crack front 

   
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j
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Constants ij

  are determined from the system of equations  i j ij   , where  2/3;0;2 /3j   . 

Substituting (10) into the boundary integral equations (3), (4), one obtains the system of linear algebraic 

equations for unknown nodal values of the boundary and discontinuity functions. 

3.3. Techniques for precise integration of regular, weakly, strongly and hypersingular integrals 

The coefficients of the obtained system of algebraic equations are the double integrals 
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where  ,NJ  
 

 
 
 

x x
 is a Jacobian of variable change on the boundary element N . 

Since the shape functions  i  ,  j   can be selected in the form (12) for elements, which model the 

crack front, customary Gaussian quadrature can produce high error, even if the collocation point 0x  does not 

belong to the boundary element N . Therefore, in the present boundary element formulation the following 

polynomial mapping is used 

 2

1 1

1
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2
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1
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2
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9
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4
d d d d        , (13) 

which maps the domain    1;1 1;1    onto itself and smoothens the integrand at 1 1   ; 1 1   . After (13) is 

applied, the regular integrals are evaluated numerically with Gaussian quadrature (20 nodes are used). 

Special attention should be paid to the case, when  0 0

0 , x x  belongs to the boundary element N . 

From Eqs (3) – (7) it follows that in this case integral 
 1

I  is weakly singular, 
 2

I , 
 3

I  are strongly singular, and 
 4

I  is hypersingular. All these integrals are evaluated in the polar coordinate system, which yield 
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where   0,F   x x  is a corresponding kernel;  0

1 cosr     ,  0

1 sinr     ;  0 0

0 , x x  (

 0 0

1   ,  0 0

1   ) is a collocation point at the boundary element N ;  0 0

1 1 1arctan 1 ,1      , 

 0 0

2 1 1arctan 1 ,1     ,  0 0

3 1 1arctan 1 , 1      ;  0

4 1 02 arctan 1 , 1         ; 5 12    ; 

   0

1 11 cosR     ;    0

2 11 sinR     ;    0

3 11 cosR      ;    0

4 11 sinR      . 

It is readily seen from Eq (14) that if the kernel  0,F x x  is weakly singular  ~ 1F r  integral (14) is 

regular, since the polar transformation Jacobian cancels this singularity. Therefore, convenient Gaussian 

quadrature rule can be applied to evaluate this integral numerically. 
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For numerical evaluation of singular ( 2~1F r ) and hypersingular ( 3~1F r ) integrals Pan and Yuan [10, 

p. 211] proposed to use the finite part Kutt’s numerical quadrature [18, p. 40] for inner integral with respect to r  

and Gaussian quadrature for the outer regular integral with respect to  . 

However, the main problem of the Kutt’s quadrature used by Pan and Yuan [10, p. 211] is the requirement 

of evaluation of the singularity coefficient at the point 
0x , which depend on the vector 

0x x . The latter is 

influenced by the geometry of the boundary element. Pan and Yuan [10, p. 211] considered only planar 

elements. When non-planar boundary elements are considered, analytic determination of the dependence of 

kernel singularity coefficient on boundary element curvilinear coordinates  ,   produce formulae, which are 

hard to implement in the computer code. Therefore, here Kutt’s quadrature is modified to omit the requirement 

of computation of singularity coefficient and to be more accurate. 

Kutt [19, p. 205] proposed the following quadrature rule for finite part integrals with algebraic singularity 
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where  0;1it   are quadrature nodes;   is a positive integer, which indicates the strength of singularity; 0R  ; 
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

 are weights for the selected   and it   1,...,i N . The latter are determined from the following 

system of linear algebraic equations 
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Due to its polynomial interpolation nature, Kutt’s quadrature is exact for polynomials of degree 1N  . 

Kutt has selected the equidistant node set  1it i N   [18, p. 40]. The same nodes were used by Pan and 

Yuan [10, p. 211] for numerical evaluation of hypersingular integrals in their 3D BEM. However, this set of 

quadrature nodes has two inconveniencies, when implemented in BEM. The first one is that one has to know 

 0f . Since in the BEM it is not given explicitly, one should consider the integrand behavior at a singular point 

separately, which is difficult in the case of non-planar geometries. The second is that for high numbers N  of 

quadrature nodes Runge’s phenomenon can be observed, which can lead to sufficient errors, when integrating 

certain functions. These inconveniences can be overcome if one select Chebyshev nodes as the nodes of Kutt’s 

quadrature 

 2 11
1 cos

2 2
i

i
t

N

 
  

 

   1,...,i N . (17) 

Numerical tests on polynomials of degree higher than 1N   have shown that the error of the modified 

Kutt’s quadrature with Chebyshev nodes is much less than those of the convenient Kutt’s quadrature with 

equidistant nodes. 

With respect to this, inner finite part integrals are evaluated via Eq (15) assuming that 

            2 2 1

0 1 1, , , 1 1i j Nf r F J r            x x , (18) 

where 1   is the strength of singularity of the kernel  0,F x x . Since Chebyshev nodes (17) used in the 

quadrature (15) do not require to evaluate  0f , no other special treatment of singular terms is required, which 

is advantageous comparing to the usage of convenient Kutt’s quadrature utilized by Pan and Yuan [10, p. 211]. 

3.4. Stress intensity factors at crack front 

Consider a local coordinate system at a point A  of the crack front (Figure 1). The axes of this system are 

defined by three unit orthogonal vectors n , m , τ , where n  is a normal to crack face; m  is a tangent to the 

crack front curve at A , and  τ n m . Without loss in generality consider that the boundary element, which the 

point A  belongs to, models the crack front line with its side 1   (Figure 1). 

 
Figure 1. Local coordinate system at crack front 
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Normal and tangent vectors are defined as 

   

    
   

    

x x x x
n ;  

 

 
 

 

x x
m , (19) 

where  , x  is a position vector, which defines the surface of the boundary element. Then according to Eq 

(10) the displacement discontinuity function  *u x  in the local coordinate system on the considered boundary 

element is equal to 

       
3 3

,*

1 1

i j

i j

i j

   

 

  u x Ω u , (20) 

where 
 ,i j

u  are the nodal values of the displacement discontinuity function, and Ω  is the rotation matrix, 

which is defined as 

1 1 1

2 2 2

3 3 3

n m

n m

n m







 
 


 
  

Ω . (21) 

According to the stress intensity factors vector at the point A  of the crack front is defined as 

   
 *lim

8A s




 

x x
k L u x

x
, (22) 

where  
T

II I III, ,K K Kk ; IK , IIK , IIIK  are the stress intensity factors of corresponding modes; L  is a Barnett – 

Lothe tensor evaluated in the local coordinate system; and  s x  is an arc length evaluated from x  to A  along 

the cross section of the crack with the plane  ,n τ . 

Expanding  s x  into Taylor series at the vicinity of A  one obtains 

        2 2
1 1 ;A As O          , (23) 

where 

 
1, A

A

  

 


 


 



x
τ . (24) 

Substituting (12) and (23) into (22) and evaluating the limit one obtains 

 
   

3 3
,

1

1 18

i j

i j A

i jA


 

 



 

   k L Ω u , (25) 

which is the formula implemented in the present BEM for precise evaluation of the stress intensity factors. 

According to [11, p. 96] the Barnett – Lothe tensor in the local coordinate system can be evaluated with the 

following integral 

  T

3

0

1
d



 


  L ΩN Ω , (26) 

where          1 T

3       N R T R Q ;  ij ikjm k mQ C   ,  ij ikjm k mT C   ,  ij ikjm k mR C   ; 

cos sin  ω τ n , sin cos    τ n . 

4. Numerical results 

4.1. Fast convergence of the trapezoid rule in evaluation of anisotropic kernels 

Since at first glance it is not obvious that the trapezoid rule can efficiently handle evaluation of anisotropic 

kernels, we consider an example of Xie et al. [14] of numerical evaluation of the second derivative 
,IJ kmU  of 

elastic Green’s function. The results are obtained for Mg material with the following elastic properties [14]: 

11 22C C  59.7 GPa, 33C  61.7 GPa, 13 23C C  21.7 GPa, 12C  26.2 GPa, 44 55C C  16.4 GPa, 

66 16.75C   GPa. 

Second derivative of the Green’s function is evaluated at the point  
T

0 1,2,3 x x . Four methods are 

compared. They are the Numerical Integration Method (NIM) [14], the Residue Calculus Method (RCM) [14, 

p. 38], the improved Residue Calculus Method (iRCM) [14, p. 38], and the proposed numerical integration with 

the Trapezoid Rule (TR). Since the worst convergence is possessed by 
22,11U  [14, p. 38], only its value is 

presented in Table 1. The exact solution is taken from Pan and Chou [20, p. 10]. Numerical calculations are held 



ISSN 1728-4260    ВІСНИК ЖДТУ. 2019. № 1 (83) 

65 

with the developed C++ program, which uses IEEE 64-bit double precision floating point number format (with 

15–17 significant decimal digits). 

It can be seen from Table 1 that the trapezoid rule converges very fast. Only 16 nodes of the trapezoid rule 

are enough to obtain the same accuracy as the Gaussian quadrature with 25 nodes or the improved RCM. The 8-

point trapezoid rule has the accuracy comparable with the RCM. 

Comparison of the results for different number of the trapezoid rule nodes allows to state that the number of 

true significant decimal digits is proportional to the number of nodal points in the trapezoid rule. However, the 

number of true decimal digits is also limited with the length of the mantissa used in floating-point computations. 

 

Table 1 

22,11U  evaluated by different approaches at the given point of Mg anisotropic medium 

 

Exact −6.2581146860784102 510  

910  m-1/N 

NIM with 25 Gaussian points −6.2581146860783276 510  

RCM −6.2581147470664643 510  

iRCM −6.2581146860783736 
510  

TR with 4 points −6.267696062871067 
510  

TR with 8 points −6.258112576749089 
510  

TR with 12 points −6.258114686298868 
510  

TR with 16 points −6.258114686078395 
510  

TR with 20 points −6.258114686078408 
510  

 

4.2. Numerical verification. Penny-shaped crack in an infinite isotropic medium 

In order to verify the developed BEM consider the thermoelastic problem for a penny-shaped crack of radius 

R , which is parallel to 1 2Ox x  plane. The crack is meshed with only 12 quadrilateral discontinuous boundary 

elements (Figure 2). Four central boundary elements Nos. 1–4 use general quadratic shape functions (11), while 

other elements (Nos. 5–12) utilize special shape functions (12) to account for the square root singularity of stress 

at the crack front. Thus the reduced numerical problem has 12x9x3=324 degrees of freedom. 

 

 
 

Figure 2. Boundary element mesh of the penny-shaped crack 

 

The medium is loaded with uniform stress field 33 p   at infinity. According to [21, p. 15], in this case the 

analytic solution of the problem gives the following value of stress intensity factor 
0

IK p R  . Normalized 

values of the stress intensity factor IK  along the crack front line defined by polar angle   are depicted in 

Figure 3. 
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Figure 3. Numerically obtained stress intensity factor along a front line of 

the penny-shaped crack 

 

Figure 1 shows that the stress intensity factor IK  is constant along crack front. Detailed analysis of 

numerical data has shown that relative error of computations is less than 0.9 %. Thus present boundary element 

approach allows precise study of stress intensity factors with low number of elements. 

4.3. Paraboloidal crack in anisotropic medium 

Consider anisotropic Mg medium (which properties are given in section 4.1) containing a crack, which 

surface is given by the following equation of elliptic paraboloid of revolution 

 2 2

3 1 2x x x  ,  2 2 2

1 2x x R  , (27) 

where   and R  are constants (if 0   one obtains a penny-shaped crack of a radius R ). The crack is 

meshed with only 12 quadrilateral discontinuous boundary elements, which 1x  and 2x  coordinates are the same 

as depicted in Figure 2, and 3x  coordinate is determined through Eq (27). The medium is loaded with uniform 

stress field 33 p   at infinity. Normalized values of stress intensity factors at crack front are depicted in Figure 4. 

The normalization factor is equal to 
0

0 IK K p R   . 

 

 
(a) 

 
(b) 

Figure 4. Normalized stress intensity factors along a front line of paraboloidal crack: (a) normal mode SIF IK ; 

(b) shearing mode SIF IIK . 
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Figure 4 shows that SIF IK  decrease with increase in  , while IIK  increase in magnitude. This is obvious, 

since non-planar crack exhibits shearing mode opening due to its geometry and direction of the applied loading. 

Since crack front line is parallel to isotropy plane of the materials, both stress intensity factors are constant along 

the front line. Also it should be noted that material anisotropy in the case of a penny-shaped crack ( 0  ) does 

not affect stress intensity factor; it is the same as for isotropic case. 

4. Discussion 

The paper presents fast and accurate boundary element method for fracture mechanics analysis of 

anisotropic solids with 3D cracks. Several novelties are introduced, which allow derivation of the efficient 

boundary element approach. The first of them is application of the trapezoid rule to evaluation of anisotropic 

kernels. Due to its simplicity and exponential convergence for integrals over a periodic interval it allows accurate 

and fast evaluation of the kernels, which is essentially important in the derivation of fast BEM. The second is the 

usage of polynomial mappings and modified Kutt’s quadratures for finite part integrals, which allows accurate 

numerical integration of singular and hypersingular integrals without additional treatment of singular terms, 

which is advantageous for non-planar geometries. The third is an introduction of special shape functions for the 

displacement discontinuity at the crack, which allows accurate determination of the field intensity factors. 

These novelties allowed derivation of the efficient 3D BEM, which allows studying both isotropic and 

anisotropic linear elastic materials with cracks of arbitrary shape. The numerical examples presented prove high 

accuracy of the present boundary element formulation. 

Present approach can be combined with Sih’s strain energy density criterion to study 3D cracks propagation 

in anisotropic elastic solids under fatigue loading, which is the direction of future research. 
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