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ON THE TASK OF BUILDING THE ROUTES OF PASSENGER BUSES 

OF TWO AUTOMOBILE COMPANIES 
 

The article formulates a mathematical model search of n bus routes between the two 
points, which carry out cruises corresponding to the specified schedule, and with specified 
duration. The duration of each route consists of two cruises and idle hours, which are 
determined by the moment of the completion of the first cruise and the moment of the 
beginning of the second. Totally, 2n cruises are performed and provide the passenger trans-
portation by n cruises. In this specific version of the problem is the additional condition, 
that the execution time of each route shall not exceed the established limit of a standard d.  

Offered framework for the solution of the problem of procedure to the task assignment 
and modification of Kuhn-Munkres algorithm, which is looking for a solution of the problem 
of assignment to the maximum. The proposed numerical scheme is an iterative process, each 
step of which provides the topmost layout. To adapt the task to form, which allows to apply 
the modification of Kuhn-Munkres algorithm, to consider the bichromatic graph, which 
builds perfect matching with a maximum weight of the ribs.  

Keywords: assignment problem; bichromatic graph; Kuhn-Munkres algorithm. 

 
Problem statement. The problem of increase of efficiency of functioning of transport systems 

constantly needs development and improvement of methods and models, aimed at building routes of 
movement of vehicles. A wide range of tasks that simulate the processes of management and planning 

in transport networks, formally reduced to problems of finding the closed routes [1-5]. One of these 
tasks is examined in this article. 

Suppose two automobile companies which are located in points 1 and 2 perform passenger trans-

portations between these points by n buses. Dispatch time for all 2n cruises from point 1 to point 2 

and vice versa is known from the schedule. Every bus of an automobile company k , 1 2k , ,  according 

with a schedule starts and finishes the route consisted of two cruises in the same point.  

Cruise i  from the point 1 to the point 2 starts at the time moment 1,it , 1, ,i n  and its duration 

equals 1i . Cruise j  from the point 2 to the point 1, which starts at the time moment 2 jt , 1j , n , 

is performed in a time 2 j . For a bus which leaves as a cruise i  from the point 1 to the point 2 and 

comes back as a cruise j  from the point 2 to the point 1, way time is calculated: 

1
2 1 2ij j i jd t t    ; 2 1 1j i it t   . 

The duration of pendulous cruise of a bus performing firstly a cruise j, and then a cruise i, equals to 
2

1 2 1ij i j id t t    , 1 2 2i j jt t   . 

Assigning a task to find n  cruises which according to the specified route to bus stations with 

specified duration of routes 1i  і 2 j , 1i , j , n , could be performed at the minimal total time. 

Presentation of basic material of the research. We sum two tables 1
ij

n
d 

 
 and 2

ij
n

d 
 

. Every 

element 1
ijd  of the first table equals to the time of performance of probable pendulous cruise which 

includes the cruise  i  from the point 1 to the point 2 and the following cruise j  from the point 2 to 

the point 1. In other words, a table  1
ij

n
d 

 
 obtained assuming that each bus starts its route in the
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point 1. Tables 2
ij

n
d 

 
 includes the duration of all possible routes starting with a cruise j   from 

point 2 in point 1 and finish with a cruise i  from point 1 to point 2. In this case, we assume that 

every bus goes from point 2 to point 1 and returns to the same point 2.  

Overlaying matrix 2
ij

n
d 
 

 on matrix 2
ij

n
d 
 

 we obtained a table  1 2
ij ij

n
d ,d 

  
 of ordered formed 

the matrix ij
n

d 
 

, where  1 2
ij ij ijd min d ,d . Now it is clear that the solution of this problem is solving 

the assignment problem (AP) for outgoing data presented in matrix ij
n

d 
 

. 

When passing from the real situation to the mathematical model, we often have to ignore some 
very significant details. Particularly, in practice the optimal solution of AP in the given 

interpretation can become unsuitable. It refers to a case where between the largest and smallest 
values of its components unacceptably large discrepancy is revealed. Most real circumstances require 

solutions that provide equal load on performing sites within the prescribed limits. Indeed, in the 
situation, the duration of each route has two cruises and idle hours, determined the time of completion 

of the first cruise and the time of the start of the second. Clearly, the need for planning such idle 
hours as simple inter-shift break gives no rise to doubt. But it can not be both too short and too 

long. 
Of course, this kind of detail account is the «complications» of a mathematical model and usually 

accompanies by certain difficulties in the development of algorithms for solving the following task. 
In the version under consideration, this complication is an additional condition, according to which 

the performance of each route must not exceed the limit set by regulation d . 

In the AP terminology in this case it is necessary to allocate performance i  to machines j , 

1i , j ,n , so, to minimize 

   
1

n

i
j

B d



  , (1) 

where         1 2, ,..., i ,..., n      – permutation of matrix columns ij
n

d 
 

, 0ijd R


 , 

𝑑𝜋[𝑖] = {
𝑑𝑖𝑗, if the job 𝑖 assingned to the machine 𝑗 = 𝜋[𝑖]; 

∞ otherwise,                                                                     
 

on condition that for the specified value 0d R


  

 id d  , 1i ,n . (2) 

It turns out that the task (1) is easily reduced to a minimization task  B   without restrictions (2). 

It is necessary in a parent matrix ij
n

d 
 

put ijd   , if ijd d . It is obvious that the received matrix 

implicitly takes the condition into account (2). Therefore, to solve the task 1) we require a AP decision 

algorithm which works with matrix ij
n

d 
 

and which contains infinitudes of big numbers. This matrix 

admits the situation when AP has no solution. For this reason, the algorithm should contain means 

to set the case of undecidable problem. 
The above mentioned requirements can be satisfied with the modification of Kuhn-Munkres 

algorithm for solving AP at maximum: to find the set of all permutations         1 2, ,..., i ,...,     

 n  matrix columns ij
n

d 
 

 permutation       1 2
* * * *

, ,..., n    , which provides the maximum 

of functional 

   
1

n

i
i

C d



 . 

To minimize  B   with the help of Kuhn-Munkres algorithm it is necessary to preliminary 

modify the matrix ij
n

d 
 

, set 

                           𝑑𝑖𝑗 = {
𝑑𝑖𝑗 , if 𝑑𝑖𝑗 ≤ 𝑑,

∞otherwise, 
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where d  – the maximum in a parent matrix ij
n

d 
 

, which is not equal to  , or integral sum number 

in a limit (2). 

These considerations allow to formulate AP to maximum as follows.  

Let in a permutation         1 2, , ..., i , ..., n      numbers of matrix columns ij
n

d 
 

, 

where 0ijd R


  or ijd   , work prescription i  on an automobile j  is characterized by a reciprocal 

coefficient 

𝑑𝜋[𝑖] = {
𝑑𝑖𝑗, if the job i assingned to the machine 𝑗 = 𝜋[𝑖]; 

– ∞ otherwise.                                                                      
 

Diagonal         1 2 i nd , d , ..., d , ..., d     , which corresponds to  , assigned mass equals to 

   
1

n

i
i

C d



 . 

The following permutation should be found       1 2
* * * *

, , ..., n    , which 

   *
C max C


  . (3) 

Matrix ij
n

d 
 

 corresponds to bichromatic graph  G X ,Y ,U , X Y n  , where a node ix X  

connects to a node jy Y  by a link  i jx , y  with a mass  i j ijd x , y d   . In a graph G  it is 

required to find the ideal matching  *
  with a maximal sum of link weight  *

C   [6-7]. 

Developed *
  by the Kuhn-Munkres’ method it appears to be iteration process connected with 

calculation of function f , which is called an accepted topmost layout. 

An accepted topmost layout with function f  with a value of a set of real numbers which is 

defined on a multitude  X Y  so that 

     f x f y d x, y  , x X , y Y . 

Then  f x  is called a layout of a node x . 

Kuhn-Munkres algorithm starts working on admissible topmost layout  

   
1

i i j
j n

f x max d x , y
 

 , 1i ,n ,   0jf y  , 1j ,n . 

Function f  is put in accordance with a set fU  of links  x , y  to graph G , for which 

     f x f y d x, y  . Subgraph fG  of graph G  with a set of links fU  is called a partial graph of 

equalities that corresponds to f . 

The next theorem connects a subgraph of equalities with an optimal matching and creates the 

basis for Kuhn-Munkres application. 

Theorem. Let f  is allowable vertex layout of a graph G   X ,Y ,U , X Y . If fG  contains 

an ideal matching *
 , то *

  – an ideal matching with a maximum weight  *
C   in a graph G . 

Proof. As a partial graph of equalities fG , which contains an ideal matching *
 , is a subgraph 

of a graph G , so *
  is an ideal matching in G . Due to the fact that every link u  in *

  belongs to 

the partial graph of equalities fG  and every node of a graph G  is incident to one link with *
 , so 

for weight  *
C   matching *

  formula is justified: 

         
  

*

*

x X y Y v X Yu

C d u f x f y f v





   

       . 

From the other hand, if  is a random ideal matching in a graph G , then 

     
 u v X Y

C d u f v





  

   . 
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So as    *
C C   and then *

  is an optimal matching in a graph G . □ 

The modification of Kuhn-Munkres algorithm for solution the task in the statement of (3) is a 
sequence of steps.  

S0. Algorithm of solution AР for maximum. ij
n

d 
 

 – assigning matrix which accepts ijd   ; 

G  – bichromatic graph with a node set X Y , X Y n  , where a node ix X  is connected to a 

node jy Y  by a link  i jx , y  with weight  i i ijd x , y d   . For every node ix Y , which 

corresponds to a line i , and for every node jy Y , which corresponds to a column j  of a matrix 

ij
n

d 
 

, it is stated  
1

i ij
j n

f x max d
 

 , 1i ,n ,   0jf y  , 1j , n , and a partial graph of equalities is 

constructed fG ; 0l  . 

S1. Choose in fG  initial matching l . 

S2. If all the nodes in X  saturated in l , so l  is an ideal matching and correspondingly *
l  . 

Then to calculate  *
C  , that’s all. Otherwise u  is unsaturated node in X , set  S u , T   . 

S3. Let  f S  – set of nodes with Y , adjacent in a graph fG  with nodes in set S . If  fT S 

, then go to S6, otherwise  fT S  , go to S4. 

S4. If for all ix S  и jy T  ijd   , then it’s the end: AР is at the maximum and there is no 

solution or calculate then: 

    f i j ij i j ijd min f x f y d x S , y T , d        

And get new allowable layout 

                       𝑓’(𝑣) {

𝑓(𝑣)– 𝑑𝑓 ,  if 𝑣 ∈ 𝑆,

𝑓(𝑣) + 𝑑𝑓 ,  if 𝑣 ∈ 𝑇,

𝑓(𝑣) in all other cases.

 

S5. Change f  into f   and fG  into fG  , go to S1; 0l  . 

S6. Choose a node  fy S T  . If y  is unsaturated in l , then go to S7, otherwise set z  – 

opposite number y  in l ,  S S z  ,  T T y   and go to S3. 

S7. Increasing way with a set of line P  is built. Set 1l l P     і 1l l  . Go to S2. 

It should be noted that the Kuhn-Munkres algorithm is not the only algorithm of AP. Well-
known algorithms are with the best temporal and capacitive estimated cost of achieving optimum. 

Interest to the Kuhn-Munkres algorithm is due to its features that create a mechanism of aggregation, 
which is the base unit action sequences on the calculation of allowable markup vertex construction 

of subgraph equalities and known procedure of perfect matching in a graph  X ,Y ,U , X Y . 

In the Kuhn-Munkres algorithm we start with allowable node layout f , where 

       
1

1

n
*

ij
j n

x X y Y x X i

f x f y f x const max d C 
 

   

        , 

and then build a corresponding partial graph of equalities fG , where search of ideal matching is 

performed. If an ideal matching is built in fG , so on the basis of the theorem it is optimal and the 

algorithm on S2 stops. If there is no optimal solution *
  in a partial graph of equalities fG , then 

one of two variants is possible. Firstly, it is possible when in matrix ij
n

d 
 

 number of elements 

ij    and their location presupposes the absence of a task solution (3). Then calculations stop on S4. 

Secondly, if fG  doesn’t contain *
 , but to the graph fG  we can add links which extend it to fG  , 

then on S4 changes of allowable vertex layout f are performed and a process of finding an optimal 
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solution is repeated in a partial graph of equalities fG  , which corresponds to f  . Variation of values 

 f x  і  f y , which don’t change their sum are performed till the ideal matching will be found. 

It is obvious that the Kuhn-Munkres algorithm finds a solution to PA during polynomial time. 
 
Example. Schedule in bus stations 1 and 2 defined the following table: 

Point 1 Point 2 

i  1it  

Departure time 
1i  

Way time 
j  2 jt  

Departure time 

2 j  

Way time 

1 7.00 5 1 6.00 5 

2 8.00 6 2 7.00 6 
3 13.00 6 3 14.00 6 

4 16.00 5 4 15.00 6 
5 18.00 6 5 19.00 5 

 
The table with the limit setting the duration of each route after these elementary transformations 

defines the inputs of (1). 
Over the following table we find the matrix 

1

5

28 30 13 14 17

27 29 12 13 16

22 24 31 32 11

19 21 28 29 32

17 19 26 27 30

ijd

 
 
 

   
   

 
 
 

,  2

5

30 32 13 15 18

29 31 12 14 17

22 24 29 31 34

21 23 28 30 33

17 19 24 26 29

ijd

 
 
 

   
   

 
 
 

, 
5

28 30 13 14 17

27 29 12 13 16

22 24 29 31 11

19 21 28 29 32

17 19 24 26 29

ijd

 
 
 

   
 

 
 
 
 

. 

Setting the restrictions 26ijd d  , we get 

5

13 14 17

12 13 16

22 24 11

19 21

17 19 24 26

ijd

  
 
 

 
      

 
   

  

. 

We will solve AP for maximum of matrix  

5

13 12 9

14 13 10

4 2 15

7 5

9 7 2 0

ijd

  
 
 
 

      
 

   
  

. 

 

Perform the Kuhn-Munkres algorithm. 

S0. According to the matrix 
5

ijd 
 

 we get the following allowable node layout: 

 if x  13, 14, 15, 7, 9;   0if y  , 1 5j , , 

and then we find a partial graph of equalities fG  (fig. 1); 0l  . 

S1. Choose in fG  initial matching   0 1 3x , y  . 

S2. Node 2x  is unsaturated in 0 . Set  2S x , T   . 

S3.    3f S y  , go to S6. 

S6. Choose the node  3 fy S T  . Since 3y  is saturated in 0 , we define its opposite number – 

node 1x  in 0 ;  1 2S x ,x ,  3T y ; go to S3. 
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1y 2y 3y 4y 5y

1x 2x 3x 4x 5x
 

Fig. 1. Partial graph fG , corresponded to the first node layout f  

 

S3.    3f S y  ,  f S T  . 

S4. Calculate                 1 4 14 1 5 15 2 4 24 2 5 25 fd min f x f y d , f x f y d , f x f y d , f x f y d            

13 0 12  13 0 9  14 0 13min , , ,        14 0 10 1   . Define new node layout:  

 1 12f x  ,  2 13f x  ,  3 15f x  ,  4 7f x  ,  5 9f x  ; 

 1 0f y  ,  2 0f y  ,  3 1f y  ,  4 0f y  ,  5 0f y  . 

Partial graph of equalities fG corresponds to obtained layout and is shown on fig. 2. 

 

1y 2y 3y 4y 5y

1x 2x 3x 4x 5x
 

Fig. 2. To a partial graph of equalities links  1 4 x , y ,  2 4 x , y are added: 

      1 4 1  1  5jf x f y max d x , y j ,   ,       2 4 2  1  5jf x f y max d x , y j ,   . 

 

S1. As an initial matching can be chosen: 

      0 1 3 2 4 3 5x , y , x , y , x , y  . 

S2. Node 4x  unsaturated,  4S x , T   . 

S3.    1f S y  . 

S6. Choose unsaturated node 1y . 

S7. Increasing way consists of one link:   4 1P x , y .  

Find         1 1 3 2 4 3 5 4 1x , y , x , y , x , y , x , y  , 1l  . 

S2. 5x  – unsaturated node,  5S x , T   . 

S3.   1f S y  . 

S6. Node 1y  saturated, its opposite number in 1  – node 4x , S  5 4 x , x ,  1T y . 

S3.    1f S f y  ,  f S T  . 

S4. Find 

        4 2 42 5 2 52 fd min f x f y d , f x f y d ,      

         5 3 53 5 4 54 7 0 5  9 0 7  9 1 2f x f y d , f x f y d min , , ,           9 0 0 2   . 

Define the following allowable node layout: 

 1 12f x  ,  2 13f x  ,  3 15f x  ,  4 5f x  ,  5 7f x  ; 

 1 2f y  ,  2 0f y  ,  3 1f y  ,  4 0f y  ,  5 0f y  . 

Partial graph of equalities fG , which corresponds to obtained layout is depicted on fig. 3. 
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1y 2y 3y 4y 5y

1x 2x 3x 4x 5x
 

Fig. 3. Partial graph of equalities which contains the ideal matching 
 
Starting with S1 we repeat actions as to finding an ideal matching in obtained partial graph of 

equalities. The algorithm finishes its work on S2 creating an optimal solution of a task

 3 4 5 1 2
*

, , , ,  ,    13 24 35 41 52 13 13 15 7 7
*

d , d , d , d , d , , , ,   , 

  55max C   . This repositioning provides the minimum of functional   
1

n

i
i

d d


 . 

We get   13 13 11 19 19 75
*

B        . 

While recoursing the table 1

5
ijd 

 
, 2

5
ijd 

 
 from the matrix 

5
ijd 

 
 it is clear that 

1 2
13 13 13d d d  , 1

24 24d d , 1
35 35d d , 1

41 41d d , 1 2
52 52 52d d d  . 

Hence, each of the sequences  1 1 1 1 1
13 24 35 41 52d , d , d , d , d ,  2 1 1 1 1

13 24 35 41 52d , d , d , d , d , 

 1 1 1 1 2
13 24 35 41 52d , d , d , d , d ,  2 1 1 1 2

13 24 35 41 52d , d , d , d , d  sets the minimum total run time of five routes in 

accordance with the schedule for the bus stations of points 1 and 2. In the first sequence duration of 
routes that begin and end in point 1 is listed, so that the traffic between the bus station is provided 

by a transport company, which is located at this point. In the fourth sequence there are lengths of 

routes 2
13d , 2

52d from point 2 to point 1 and back from point 1 to point 2. In this case, the schedule 

should be provided with three buses of a company, situated in point 1 and two buses of a company 

situated in point 2. 

Conclusions. The mathematical model of search n bus routes between two points and the 

algorithm of its solution, can increase the efficiency of the bus fleet by two transport 
companies.  

This mathematical model in the future can be developed for k transport companies with regard 
to need to visit certain areas of roads. Using mathematical and algorithmic apparatus developed in 
[8–10], will allow more effective planning and make schedules and routes of public transport. 
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